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Abstract—This paper presents an algorithm, ParGenFS, for
generalizing, or “lifting”, a fuzzy set of topics to higher ranks
of a hierarchical taxonomy of a research domain. The algorithm
ParGenFS finds a globally optimal generalization of the topic
set to minimize a penalty function, by balancing the number of
introduced “head subjects” and related errors, the “gaps” and
“offshoots”, differently weighted. This leads to a generalization
of the topic set in the taxonomy. The usefulness of the method
is illustrated on a set of 17685 abstracts of research papers on
Data Science published in Springer journals for the past 20 years.
We extracted a taxonomy of Data Science from the international
Association for Computing Machinery Computing Classification
System 2012 (ACM-CCS). We find fuzzy clusters of leaf topics
over the text collection, lift them in the taxonomy, and interpret
found head subjects to comment on the tendencies of current
research.

Keywords–generalization, gap-offshoot penalty, fuzzy cluster,
annotated suffix tree

I. INTRODUCTION

We propose a method for structurization and generalization
of research text collections over a taxonomy of the field, specif-
ically, the ACM Computing Classification System (ACM-CCS
2012) [1]. The method, Parsimonious Generalization of Fuzzy
Sets (ParGenFS), is applied to generalize fuzzy topic clusters
extracted from a collection of 17685 abstract of research papers
from Springer journals.

The existing approaches to computational analysis of struc-
ture of text collections are cluster analysis and topic modeling.
Both approaches consider items of the same level of granularity
as individual words or short phrases in the texts, involving
no generalization as a specific goal. However, the hierarchical
nature of the domain of text semantic analysis is reflected in
some publications. We can distinguish, at least, three directions
at which the matter of generalization is addressed.

First, there are activities related to developing and explor-
ing hierarchical taxonomies which are indeed a form of knowl-
edge engineering and become widely popular (e.g., Genome
Ontology (GO) project [3], SNOMED CT project [4] and the
like). Some papers explicitly explore hyponymic/hypernymic
relations (e.g. [5], [6], and references therein). A recent work
[7] is devoted to supplementing a taxonomy with newly
emerging research topics. A second direction is part of con-
ventional activities in text summarization. Usually, summaries

are created using a rather mechanistic approach of sentence
extraction. There is also an approach for building summaries
as abstractions of texts by combining some templates such
as Subject-Verb-Object (SVO) triplets, e.g. [8]. The third
type of approach is what can be referred to as “operational”
generalization. In this case, the authors use generalized case
descriptions involving taxonomic relations between general-
ized states and their parts to achieve a tangible goal such as
improving characteristics of text retrieval, e.g., [9], [10].

The present work presents a novel approach, to the best of
our knowledge. We use the concept of taxonomy for straight-
forwardly modeling the concept of generalization. According
to the Merriam-Webster dictionary, the term “generalization”
refers to deriving a general conception from particulars. We as-
sume that a most straightforward medium for such a derivation,
a domain taxonomy, is given to us. We address the problem of
generalize a fuzzy set of taxonomy leaves representing the
essence of some empirically observed phenomenon over a
domain taxonomy. We consider the most popular Computer
Science taxonomy manually developed by the world-wide
Association for Computing Machinery, the ACM Computing
Classification System (ACM-CCS) [1]. We take its part related
to Data Science, as presented in a slightly modified form by
adding a few leaves in [11].

The methodology adopted in this work involves the fol-
lowing steps:

• preparing a scholarly text collection;
• preparing a taxonomy of the domain under consider-

ation;
• developing a matrix of score values expressing the

relevance between taxonomy leaf topics and research
publications from the collection;

• finding fuzzy clusters of leaf topics according to the
structure of score values to express hidden directions
of research according to the text collection;

• lifting the clusters over the taxonomy to conceptualize
them via generalization;

• interpreting the generalizations in the knowledge do-
main.

The rest of the paper is organized as follows: Section 2
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presents a mathematical formalization of the generalization
problem as of parsimoniously lifting of a given fuzzy leaf set
to higher ranks of the taxonomy. Section 3 provides a recursive
algorithm, ParGenFS, whose output is a globally optimal
solution to the problem. Section 4 describes an application of
the algorithm for deriving tendencies in development of Data
Science discerned from a collection of 17685 research papers
published by the Springer Publishers. It describes a multi-
step technology for finding and generalizing fuzzy clusters
of research topics according to the collection. The paper
concludes by describing the tendencies in the development
of corresponding parts of Data Science derived from the
generalization results.

II. A METHOD FOR PARSIMONIOUSLY LIFTING FUZZY
CLUSTER IN A DOMAIN TAXONOMY

A taxonomy is a rooted tree, a hierarchy in which each
node has only one parent, whose nodes are annotated by
taxonomy topics.

Given a fuzzy set S of taxonomy leaves, we are interested
in finding a node t(S) of a higher rank in the taxonomy,
that covers the set S ‘tightly’. Such a “lifting” approach is
a mathematical explication of the idea of generalization for a
phenomenon represented by a fuzzy leaf subset.

This problem is not that simple. Consider, for the sake of
simplicity, a crisp set S shown with five black leaf nodes on
a fragment of a tree as illustrated in Fig. 1. Fig. 1 shows the
situation at which the set of black leaf nodes is lifted to the
root, which is highlighted with black nodes of the root and its
offspring, too. In this case, there are four white nodes covered
by the root and, thus, falling in the same concept as S even
as they do not belong in S. Such a mismatch is referred to as
a gap. Gaps should be penalized. Altogether, the number of
conceptual elements introduced to generalize S here is 1 head
subject (the root), and 4 gaps occurring due to the topology
of the tree.

Another lifting scenario is illustrated in Fig. 2: here the set
S of leaf nodes is lifted just to the root of the left branch of
the tree. In this case the number of gaps drastically decreases,
to just 1. However, another type of mismatch occurs: a black
node on the right, belonging to S but not covered by the root
of the left branch. This type of error will be referred to as
an offshoot. At this lifting, three new items emerge: one head
subject, one offshoot, and one gap. This is less than the number
of items emerged at lifting the set to the root (see Fig. 1) which
makes it preferable. This conclusion, however, holds only if
the relative penalty for an offshoot is less than the total relative
penalty for three gaps.

The goal of finding a pigeon-hole for S within the taxon-
omy can be formalized as that of finding one or more “head
subjects” to cover S with the minimum number of all the
elements introduced at the generalization: head subjects, gaps,
and offshoots. This goal realizes the principle of Maximum
Parsimony (MP) which is popular in Bioinformatics and some
other domains.

Let T be a rooted tree representing a hierarchical taxonomy
so that its nodes are annotated with key phrases signifying
various concepts, and let I denote the set of all its leaves.
Each node t ∈ T is said to be the parent of the nodes
immediately descending from t in T , its children. Let χ(t) to

Figure 1. Generalization of a query set defined by the black leaf nodes, by
lifting it to the root, with the price of four gaps emerged at the lift.

Figure 2. Generalization of a query set defined by the black leaf nodes, by
lifting it to the root of the left branch, with the price of one gap and one
offshoot emerged at this lift.

denote the set of children of t. Each interior node t ∈ T −I is
assumed to correspond to a concept that generalizes the topics
corresponding to the leaves I(t) descending from t, viz. the
leaves of the subtree T (t) rooted at t, which is referred to as
the leaf cluster of t.

A fuzzy set on I is a mapping u of I to the non-negative real
numbers that assigns a membership value, or support, u(i) ≥ 0
to each i ∈ I . The set Su ⊂ I , where Su = {i ∈ I : u(i) > 0},
is referred as the base of u. As is commonly assumed, function
u does not exceed unity.

Given a fuzzy set u defined on the leaves I of the tree T ,
there should exist a head subject node h among the interior
nodes of the tree T such that its leaf cluster I(h) more or less
coincides (up to small errors) with Su. This head subject is
the generalization of u to be found. The two types of possible
errors associated with the head subject, if it does not cover the
base precisely, are false positives and false negatives, referred
to in this paper, as gaps and offshoots, respectively. They are
illustrated in Fig. 1 and in Fig. 2. Given a head subject node
h, a gap is a node t covered by h but not belonging to u, so
that u(t) = 0. In contrast, an offshoot is a node t belonging
to Su, so that u(t) > 0 but not covered by the h.

To warrant that the total number of head subjects, gaps, and
offshoots are as small as possible we introduce a penalty for
each of these elements. Assuming that the black node leaves
on Fig. 1 have membership function values equal to unity, one
can easily see that the total penalty at the head subject raised
to the root on Fig. 1 is equal to 1+ 4λ where 1 is the penalty
for a head subject and λ, the penalty for a gap. Similarly, the
penalty for the lift on Fig. 2 to the root of the left-side subtree
is equal to 1 + γ + λ where γ is the penalty for an offshoot.
Therefore, depending on the relationship between γ and 3 ∗ λ
either lift on Fig. 1 or lift on Fig. 2 is to be chosen.

We refer to node t ∈ T as to u-irrelevant if its leaf-cluster
I(t) is disjoint from the base Su. Naturally, if a node is u-
irrelevant, all of its descendants are also u-irrelevant. Consider
a candidate head subject node h in T and its meaning relative



to fuzzy set u. An h-gap is a node g of T (h), other than h,
at which a loss of the meaning has occurred, that is, g is a
maximal u-irrelevant node in the sense that its parent is not u-
irrelevant. Conversely, establishing a node h as a head subject
can be considered as a gain of the meaning of u at the node.
The set of all h-gaps are denoted by G(h).

A gap is less significant if its parent’s membership value
is smaller. We define a measure of gap importance as v(g) =
u(par(g)), where par(g) is the parent of g. In fact, the
algorithm ParGenFS below works for any definition of gap
importance. Also, we define a summary gap importance:
V (h) =

∑
g∈G(h) v(g).

An h-offshoot is a leaf i ∈ Su which is not covered by h,
i.e., i /∈ I(h). The set of all h-offshoots is Su − I(h).

Given a fuzzy topic set u over I , a set of nodes H will
be referred to as a u-cover if: (a) H covers Su, that is, Su ⊆⋃
h∈H I(h), and (b) the nodes in H are unrelated, i.e. I(h) ∩

I(h′) = ∅ for all h, h′ ∈ H such that h 6= h′. The interior
nodes of H are referred to as head subjects and the leaf nodes
as offshoots, so the set of offshoots in H is H ∩ I . The set
of gaps in H is the union of G(h) over all head subjects
h ∈ H − I .

We define the penalty function p(H) for a u-cover H as:

p(H) =
∑

h∈H−I

u(h) +
∑

h∈H−I

∑
g∈G(h)

λv(g) +
∑

h∈H∩I

γu(h).

(1)
The problem is to find a u-cover H that globally minimizes

the penalty p(H). Such a u-cover is a most appropriate
generalization of the fuzzy set u.

III. THE PARGENFS ALGORITHM FOR PARSIMONIOUS
GENERALIZATION OF FUZZY SETS

Before applying an algorithm to minimize the total penalty,
let us prune the tree from all the non-maximal u-irrelevant
nodes, i.e. descendants of gaps. Simultaneously, the sets of
gaps G(t) and the internal summary gap importance V (t) =∑
g∈G(t) v(g) in (1) can be computed for each interior node t.

We note that the elements of Su are in the leaf set of the pruned
tree, and the other leaves of the pruned tree are precisely the
gaps.

Assume that the tree T has already been pruned and
all its nodes are annotated by the membership values u(t).
Our algorithm does not depend on the way the u-values are
assigned, provided the value of u(t) is zero for all u-irrelevant
nodes t. In practical computations, we aggregate u-values on
the leaves according to the fuzzy membership constraints [11].

After this, the Parsimonious Generalization of Fuzzy Sets
(ParGenFS) algorithm applies, as follows. For each node t,
the algorithm ParGenFS computes two sets, H(t) and L(t),
containing those nodes in T (t) at which, respectively, gains
and losses of head subjects occur (including offshoots). The
associated penalty p(t) is computed too as described below.

An assumption of the algorithm is that no gain can happen
after a loss. Therefore, H(t) and L(t) are defined assuming
that the head subject has not been gained (nor therefore lost)
at any of t’s ancestors.

The algorithm ParGenFS recursively computes H(t), L(t)

and p(t) from the corresponding values for the child nodes
in χ(t). Specifically, for each leaf node that is not in Su, we
set both L(·) and H(·) to be empty and the penalty to be
zero. For each leaf node that is in Su, L(·) is set to be empty,
whereas H(·), to contain just the leaf node, and the penalty
is defined as its membership value multiplied by the offshoot
penalty weight γ.

To compute L(t) and H(t) for any interior node t, we
analyze two possible cases: (a) when the head subject has been
gained at t and (b) when the head subject has not been gained
at t.

In case (a), the sets H(·) and L(·) at its children are not
needed. In this case, H(t), L(t) and p(t) are defined by:

H(t) = {t}
L(t) = G(t)

p(t) = u(t) + λV (t).

(2)

In case (b), the sets H(t) and L(t) are just the unions of
those of its children, and p(t) is the sum of their penalties:

H(t) =
⋃

w∈χ(t)

H(w)

L(t) =
⋃

w∈χ(t)

L(w)

p(t) =
∑

w∈χ(t)

p(w).

(3)

To obtain a parsimonious lift, whichever case gives the
smaller value of p(t) is chosen. When both cases give the
same values for p(t), we may choose arbitrarily. The output
of the algorithm consists of the values at the root, namely, H
– the set of head subjects and offshoots, L – the set of gaps,
and p – the associated penalty.

A pseudo-code description of the algorithm, as well as a
demonstration that the algorithm leads to an optimal lifting,
are in [11].

IV. APPLICATION TO THE ANALYSIS OF A COLLECTION
OF PAPERS OVER THE ACM-CCS TAXONOMY

A set of 17685 research papers published in 17 Springer
journals related to Data Science for 20 years (1998-2017)
were collected for this study [11]. Specifically, the abstracts
to these papers were the object of our analysis. We take that
part of the ACM-CCS 2012 taxonomy, which is related to
Data Science, and add a few leaves related to more recent
Data Science developments. This taxonomy of Data Science,
over 317 leaves, can be found in [11]. We find fuzzy clusters
of leaf topics according to their relevance to the texts.

Most popular and well established approaches to scoring
keyphrase-to-document relevance include the so-called vector-
space approach [12] and probabilistic text model approach
[13]. These, however, rely on individual words and manual text
pre-processing. We apply a different approach, the Annotated
Suffix Tree (AST) method by [14], [15] by using purely string
frequency information.

An Annotated Suffix Tree (AST) is a weighted rooted tree
used for storing text fragments and their frequencies. To build
an AST for a text string, all suffixes from this string are
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Figure 3. An example: AST for string ‘ABCBA’.

extracted. A k-suffix of a string x = x1x2 . . . xN of length N
is a continuous end fragment xk = xN−k+1xN−k+2 . . . xN .
Each AST node is annotated by a symbol and the frequency
of the substring corresponding to the path from the root to the
node including the symbol at the node, referred annotation.
The root node of AST has no symbol or annotation. The used
algorithm [14], [15] for building an AST for any given string
x = x1x2 . . . xN can be described as follows:

1) Initialize an AST to consist of a single node, the root:
T .

2) Find all the suffixes of the given string: {xk =
xN−k+1xN−k+2 . . . xN |k = 1, 2, . . . , N}.

3) For each suffix xk find its maximal overlap, that
is, a path from the root in T coinciding with its
beginning fragment xkmax . At each node of the path
for xkmax add 1 to the annotation. If the length of
the overlap xkmax is less than k, the path is extended
by adding new nodes corresponding to symbols from
the remaining part of this suffix. Annotations of all
the new nodes are set to be 1.

An example of AST built for a string ‘ABCBA’ is presented
at Figure 3.

Having an AST T built, the string-to-document relevance
is scored over the AST by combining the conditional proba-
bilities of nodes u in T as in [15]:

p(u) =
f(u)

f(parent(u))
. (4)

For all the immediate offspring of the root (R):

p(u) =
f(u)∑

v∈T :parent(v)=R

f(v)
, (5)

where f(u) is the frequency annotation of the node u. Using
the formula above, one can calculate the probability of node

u relative to all its siblings. For each suffix xk of string x the
relevance score s(xk, T ) is defined as:

s(xk, T ) =
1

kmax

kmax∑
i=1

p(xki ). (6)

The AST relevance score of string x and text T is defined as
the mean (or sum) of all the suffix scores:

S(x, T ) =
1

N

N∑
k=1

s(xk, T ). (7)

Let us calculate the relevance score of a string ‘ABDC’
according to the AST for string ‘ABCBA’ in Figure 3. The
string has four suffixes: ‘ABDC’, ‘BDC’, ‘DC’, ‘C’. First of
all, one needs to calculate relevance scores for these suffixes
according to formula (6). These scores are presented in Table
I. After that, according to formula (7), we calculate score for
the whole string:

S(‘ABDC’, T ) = 1/4 · (0.7 + 0.4 + 0 + 0.2) = 0.325

TABLE I. COMPUTING THE RELEVANCE SCORES FOR SUFFIXES OF A
STRING ‘ABDC’.

Suffix Match Score

‘ABDC’ ‘AB’ 1
2 ·

(
2
5 + 1

1

)
= 0.7

‘BDC’ ‘B’ 1
1 ·

(
2
5

)
= 0.4

‘DC’ ‘’ 0

‘C’ ‘C’ 1
1 ·

(
1
5

)
= 0.2

In practice, we split any document into a set of strings
consisting of 2-3 consecutive words, create an empty AST for
the document, and add these strings in the AST one-by-one in
sequence, by using the algorithm above.

To lessen the effects of frequently occurring general terms,
the scoring function is modified by five-fold decreasing the
weight of stop-words such as “learning, analysis, data, method”
and a few postfixes: “s/es, ing, tion”. After an AST for a
document has been built, the time complexity of calculating the
string-to-document relevance score is O(m2) where m is the
length of the query string. An advantage of the AST method
is that it does not depend on the document length, in contrast
to the popular Levenstein-distance based approaches.

Let us denote topic-to-text relevance 17645 × 317 matrix
by P = (pij). Each (pij) is an AST relevance score between
the document i and the topic j.

Fuzzy topic clusters should reflect co-occurrence of topics:
the greater the number of texts to which both t and t′ topics
are relevant, the greater the interrelation between t and t′, the
greater the chance for topics t and t′ to fall in the same cluster.
Therefore, a 317 × 317 topic-to-topic co-relevance matrix is
defined as P ′MP where M is a diagonal matrix with (i, i)-th
entry equal to the proportion of topics whose relevance value
to i-th text is 0.2 or greater (a threshold found experimentally).

To find leaf-topic clusters, we applied an additive fuzzy
spectral method, FADDIS [17], specifically developed for this.
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Figure 4. Lifting results for Cluster L: Learning. Gaps are numbered, see Table III.

The method operates on an extension of the spectral decompo-
sition of a square similarity matrix and extracts clusters one by
one, which allows us to draw several natural criteria for halting
the process of extraction, thus appropriately defining the num-
ber of clusters. The FADDIS algorithm implements aspects that
are relevant to this task. Specifically: (a) Laplacian Pseudo-
Inverse Normalization (Lapin): Similarity data transformation,
modeling – to an extent – heat distribution and, in this way,
making the cluster structure sharper; (b) Additivity: Thematic
clusters behind the texts are additive, so that similarity values
are sums of contributions by different hidden themes; and (c)
Non-Completeness: Clusters do not necessarily cover all the
key phrases available, as the text collection under consideration
may be irrelevant to some of them.

After computing the 317× 317 topic-to-topic co-relevance
matrix, converted to a topic-to-topic Lapin transformed simi-
larity matrix, and applying FADDIS clustering, we sequentially
obtained six clusters, of which three clusters are obviously ho-
mogeneous, relating, in respect, to ’Learning’ (L), ’Retrieval’
(R), and ’Clustering’ (C). These clusters are presented in Table
II.

The clusters L, R, and C are lifted in the DST taxonomy
using ParGenFS algorithm with the gap penalty λ = 0.1 and
off-shoot penalty γ = 0.9. These values reflect the desired
limits to the gap / head-subject rate.

The results of lifting of Cluster L are shown in Fig. 4.
There are three head subjects: Machine Learning, Machine
Learning Theory, and Learning to Rank. These represent the
structure of the general concept “Learning” according to the
text collection under consideration. One can see from the
“Learning” head subjects (see Fig. 4 and comments to it) that
main work here still concentrates on theory and method rather
than applications. An interesting aspect is that the field of
learning, formerly focused mostly on tasks of learning subsets

TABLE II. CLUSTERS L, R, C: TOPICS WITH LARGEST MEMBERSHIP
VALUES.

u(t) Code Topic Cluster L
0.300 5.2.3.8. rule learning
0.282 5.2.2.1. batch learning
0.276 5.2.1.1.2. learning to rank
0.217 1.1.1.11. query learning
0.216 5.2.1.3.3. apprenticeship learning
0.213 1.1.1.10. models of learning
0.203 5.2.1.3.5. adversarial learning
. . . . . . . . .
u(t) Code Topic Cluster R
0.211 3.4.2.1. query representation
0.207 5.1.3.2.1. image representations
0.194 5.1.3.2.2. shape representations
0.194 5.2.3.6.2.1 tensor representation
0.191 5.2.3.3.3.2 fuzzy representation
0.187 3.1.1.5.3. data provenance
0.173 2.1.1.5. equational models
. . . . . . . . .
u(t) Code Topic Cluster C
0.327 3.2.1.4.7 biclustering
0.286 3.2.1.4.3 fuzzy clustering
0.248 3.2.1.4.2 consensus clustering
0.220 3.2.1.4.6 conceptual clustering
0.192 5.2.4.3.1 spectral clustering
0.187 3.2.1.4.1 massive data clustering
0.159 3.2.1.7.3 graph based conceptual clustering
. . . . . . . . .

and partitions, is expanding currently towards learning of ranks
and rankings. However, there remain many sub-areas to be
covered as seen in the list of gaps in Table III.

At lifting of Cluster R: Retrieval, we obtained head sub-
jects: Information Systems and Computer Vision. They show
the structure of “Retrieval” in the set of publications under
considerations, reflecting the ever increasing role of images
and their elements in the subject. Rather than relating the term
“information” to texts only, as it was in the previous stages of
the process of digitalization, visuals are becoming parts of the
concept of information. There is a catch, however. Unlike the



TABLE III. GAPS AT THE LIFTING OF CLUSTER L

Number Topics
1 ranking, supervised learning by classification,

structured outputs
2 sequential decision making in practice,

inverse reinforcement learning in practice
3 statistical relational learning
4 sequential decision making, inverse reinforcement learning
5 unsupervised learning
6 learning from demonstrations, kernel approach
7 classification and regression trees, kernel methods,

neural networks, learning in probabilistic graphical models,
learning linear models, factorization methods, markov
decision processes, stochastic games, learning latent
representations, multiresolution, support vector machines

8 sample complexity and generalization bounds,
boolean function learning, kernel methods, boosting,
bayesian analysis, inductive inference, structured
prediction, markov decision processes, regret bounds

9 machine learning algorithms

multilevel granularity of meanings in texts, developed during
millennia of the process of communication via languages in
the humankind, there is no comparable hierarchy of meanings
for images. One may only guess that the elements of the R
cluster related to segmentation of images and videos, as well
as those related to data management systems, are those that are
going to be put in the base of a future multilevel system of
meanings for images and videos. This is a direction for future
developments.

The lifting of Cluster C leads to 16 head subjects: cluster-
ing, graph based conceptual clustering, trajectory clustering,
clustering and classification, unsupervised learning and clus-
tering, spectral methods, document filtering, language models,
music retrieval, collaborative search, database views, stream
management, database recovery, mapreduce languages, logic
and databases, language resources. As one can see, the core
clustering subjects are supplemented by methods and environ-
ments at clustering – this shows that the ever increasing role of
clustering activities should be better reflected in the taxonomy
by inserting a corresponding node in the higher ranks. Perhaps,
soon we are going to see a new taxonomy of Data Science, in
which clustering is not just an auxiliary instrument but rather
a model of empirical classification, a big part of knowledge
engineering.

It should be pointed out that research in tendencies of
science development is carried out by several groups using
co-citation data, especially in dynamics (see, for example, a
review in [2]). That approach leads to conclusions involving
individual, rather than general, authors and/or papers, and,
therefore, is complementary to our approach.
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